Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sheng-Zhen Xu,^a Hong Luo^b and Ai-Hua Zheng^{c,a}*

^aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China,
^bDepartment of Medicinal Physics, Yunyang Medical College, Shiyan 442000, People's Republic of China, and ^cDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China

Correspondence e-mail: huyangg111@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean σ (C–C) = 0.003 Å R factor = 0.050 wR factor = 0.130 Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

2-Diethylamino-3-(4-methylphenyl)-1-benzothieno[3,2-d]pyrimidin-4(3H)-one

In the title compound, $C_{21}H_{21}N_3OS$, the three fused rings of the 1-benzothieno[3,2-d]pyrimidine system are almost coplanar. The crystal packing is stabilized by π - π stacking interactions and intermolecular C-H···O hydrogen bonds.

Comment

Heterocyclic compounds containing a fused pyrimidinone system have various applications in agriculture and exhibit remarkable biological activity (Ding *et al.*, 2004). We have recently focused on the synthesis of heterocyclic compounds containing a fused pyrimidinone system using an aza-Wittig reaction. The X-ray crystal structures of some thieno[3,2-*d*]pyrimidine derivatives have been reported (Xu *et al.*, 2005; Xu, Hu, Liu *et al.*, 2006; Xu, Hu, Wang *et al.*, 2006; Zheng *et al.*, 2006). We present here the crystal structure of the title compound, (I) (Fig. 1), which can be used as a precursor for obtaining bioactive molecules.

In (I), the bond lengths and angles are unexceptional. The mean planes of the benzothienopyrimidine ring system [maximum deviation of 0.074 (2) Å for atom C9] and benzene ring C10–C15 make a dihedral angle of 82.16 (6)°. The crystal structure (Fig. 2) is stabilized by weak intermolecular C–H···O hydrogen bonds (Table 1) and by π – π stacking interactions with centroid–centroid separations of 3.801 (1), 3.787 (1), 3.600 (1) and 3.824 (1) Å for $Cg1\cdots Cg1^i$, $Cg2\cdots Cg1^i$, $Cg1\cdots Cg3^i$ and $Cg3\cdots Cg3^i$, respectively, where Cg1, Cg2 and Cg3 are the centroids of rings S1/C1/C6–C8, N1/C7–C9/N2/C17 and C1–C6, respectively [symmetry code: (i) $x, \frac{3}{2} - y, \frac{1}{2} + z$].

Experimental

3-[(4-Methylphenyl)iminomethyleneamino]benzothiophene-2-carboxylic acid, (II), was prepared according to Xu, Hu, Liu *et al.* (2006) and Xu, Hu, Wang *et al.* (2006). To a solution of (II) (3 mmol) in dichloromethane (15 ml) diethylamine (3 mmol) was added. After the reaction mixture was allowed to stand for 1 h, the solvent was removed and anhydrous ethanol (10 ml) and several drops of EtONa in EtOH were added. The mixture was stirred for 2 h at room

Received 6 November 2006 Accepted 21 November 2006

05828 Xu et al. • C₂₁H₂₁N₃OS

temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound (I) in a yield of 76%. Crystals suitable for X-ray diffraction were obtained by evaporation of a solution in ethanol and dichloromethane $(1:2 \nu/\nu)$ at room temperature.

Z = 4

 $D_r = 1.285 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.19 \text{ mm}^{-1}$

Block, colourless

 $0.30 \times 0.20 \times 0.20 \mbox{ mm}$

16349 measured reflections

4306 independent reflections

3218 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0788P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.40$ e Å⁻³

T = 292 (2) K

 $R_{\rm int} = 0.054$

 $\theta_{\rm max} = 27.5^\circ$

Crystal data

 $\begin{array}{l} C_{21}H_{21}N_3OS\\ M_r = 363.47\\ \text{Monoclinic, } P2_1/c\\ a = 19.718 \ (3) \ \text{\AA}\\ b = 12.7157 \ (17) \ \text{\AA}\\ c = 7.5952 \ (10) \ \text{\AA}\\ \beta = 99.419 \ (2)^\circ\\ V = 1878.7 \ (4) \ \text{\AA}^3 \end{array}$

Data collection

Bruker SMART 4K CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\rm min} = 0.946, T_{\rm max} = 0.964$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.130$ S = 0.964306 reflections 238 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
C11-H11···O1 ⁱ	0.93	2.35	3.276 (2)	172
$C15-H15\cdots O1^{ii}$	0.93	2.49	3.335 (2)	150
	0.95	2.49	3.353 (2)	130

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

The H atoms were positioned geometrically $[C-H = 0.93 (CH), 0.97 (CH_2) \text{ and } 0.96 \text{ Å} (CH_3)]$ and constrained to ride on their parent atoms, with $U_{iso}(H)=1.2$ (1.5 for methyl) times $U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2001).

We gratefully acknowledge financial support of this work by the Science Research Project of Yunyang Medical College (grant No. 2006QDJ16).

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Part of the crystal structure of (I), showing the $C-H\cdots O$ hydrogenbonding interactions as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Xu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005). Acta Cryst. E61, 02789–02790.
- Xu, S.-Z., Hu, Y.-G., Liu, M.-G. & Ding, M.-W. (2006). Acta Cryst. E62, o3428– o3429.
- Xu, S.-Z., Hu, Y.-G., Wang, X. & Ding, M.-W. (2006). Acta Cryst. E62, o2229– o2230.
- Zheng, A., Xu, J. & Hu, Y.-G. (2006). Acta Cryst. E62, 03710-03711.